Modeling substitution and indel processes for AFLP marker evolution and phylogenetic inference

نویسندگان

  • Ruiyan Luo
  • Bret Larget
چکیده

The amplified fragment length polymorphism (AFLP) method produces anonymous genetic markers from throughout a genome. We extend the nucleotide substitution model of AFLP evolution to additionally include insertion and deletion processes. The new Sub-ID model relaxes the common assumption that markers are independent and homologous. We build a Markov chain Monte Carlo methodology tailored for the Sub-ID model to implement a Bayesian approach to infer AFLP marker evolution. The method allows us to infer both the phylogenies and the subset of markers that are possibly homologous. In addition, we can infer the genome-wide relative rate of indels versus substitutions. In a case study with AFLP markers from sedges, a grass-like plant common in North America, we find that accounting for insertion and deletion makes a difference in phylogenetic inference. The inference of topologies is not sensitive to the prior settings and the Jukes–Cantor assumption for nucleotide substitution. The model for insertion and deletion we introduce has potential value in other phylogenetic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian model of AFLP marker evolution and phylogenetic inference.

Amplified Fragment Length Polymorphism (AFLP) markers are formed by selective amplification of DNA fragments from digested total genomic DNA. The technique is popular because it is a relatively inexpensive way to produce large numbers of reproducible genetic markers. In this paper, we describe a Bayesian approach to modeling AFLP marker evolution by nucleotide substitution and an MCMC approach ...

متن کامل

Stochastic Evolutionary Model for Protein Structure Alignment and Phylogeny

We present a stochastic process model for the joint evolution of protein primary and tertiary structure, suitable for use in alignment and estimation of phylogeny. Indels arise from a classic Links model and mutations follow a standard substitution matrix, while backbone atoms diffuse in three-dimensional space according to an OrnsteinUhlenbeck process. The model allows for simultaneous estimat...

متن کامل

Statistical Applications in Genetics and Molecular Biology

Amplified Fragment Length Polymorphism (AFLP) markers are formed by selective amplification of DNA fragments from digested total genomic DNA. The technique is popular because it is a relatively inexpensive way to produce large numbers of reproducible genetic markers. In this paper, we describe a Bayesian approach to modeling AFLP marker evolution by nucleotide substitution and an MCMC approach ...

متن کامل

A stochastic evolutionary model for protein structure alignment and phylogeny.

We present a stochastic process model for the joint evolution of protein primary and tertiary structure, suitable for use in alignment and estimation of phylogeny. Indels arise from a classic Links model, and mutations follow a standard substitution matrix, whereas backbone atoms diffuse in three-dimensional space according to an Ornstein-Uhlenbeck process. The model allows for simultaneous est...

متن کامل

INDELible: A Flexible Simulator of Biological Sequence Evolution

Many methods exist for reconstructing phylogenies from molecular sequence data, but few phylogenies are known and can be used to check their efficacy. Simulation remains the most important approach to testing the accuracy and robustness of phylogenetic inference methods. However, current simulation programs are limited, especially concerning realistic models for simulating insertions and deleti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009